Subaqueous eruption-fed density currents and their deposits
نویسنده
چکیده
Density currents fed directly from subaqueous eruptions can be divided conceptually into three groups based on modes of fragmentation and transport: (I) explosive fragmentation, with deposition from a gas-supported current; (II) explosive fragmentation, with deposition from a water-supported current; (III) fragmentation of flowing lava, with deposition from a water-supported current (Fig. 1). Group I products include subaqueously emplaced welded ignimbrite and other high-temperature emplaced subaqueous pyroclastic flow deposits. Group II products are the most varied, and include representatives of both highand low-concentration turbidity currents, grainflows and debris flows, and are termed eruption-fed aqueous density currents. Some clasts in such currents are transported and even deposited at high temperature, but the transporting currents, ranging from grain flows to dilute turbidity currents, are water dominated even though steam may be developed along large clasts’ margins. Group III products formed from lava flow-fed density currents tend to be weakly dispersed down-gradient along the seafloor, and generally consist largely of fragments formed by dynamo-thermal quenching and spalling. Bursting of bubbles formed by vapor expansion probably contributes to some Group III beds. Distinctive column-margin fall deposits may form in water-excluded zones that developed very locally around vents in association with Group I and II deposits, and are distinguished by heat retention structures, indicators of gas-phase transport and absence of current-formed depositional features. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Subaqueous explosive eruption and welding of pyroclastic deposits.
Silicic tuffs infilling an ancient submarine caldera, at Mineral King in California, show microscopic fabrics indicative of welding of glass shards and pumice at temperatures >500 degrees C. The occurrence indicates that subaqueous explosive eruption and emplacement of pyroclastic materials can occur without substantial admixture of the ambient water, which would cause chilling. Intracaldera pr...
متن کاملSlow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption
Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ∼ 70-90 cm di...
متن کاملGeology of Lagoa das Furnas, a crater lake on São Miguel, Azores archipelago
In this thesis, the results from a geophysical mapping and coring campaign of Lagoa das Furnas are presented. Specific focus is placed on the origin of a subaqueous volcanic cone mapped in the southern part of the lake. Lagoa das Furnas is a crater lake within the Furnas volcanic centre which is located on the island of São Miguel in the Azores archipelago. The Furnas volcanic centre has a long...
متن کاملPeculiar morphologies of subaqueous landslide deposits and their relationship to flow dynamics
The morphology of subaqueous landslide deposits is seldom analyzed quantitatively or at least semi-quantitatively with regard to the dynamics of the flow. However, the peculiar morphology of the deposits can reveal information on the mechanics of propagation of the mass movement and on the mechanism of emplacement. Horseshoeshaped deposits and oriented blocks are two peculiar morphologies of su...
متن کاملSedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador
The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpret...
متن کامل